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IMPORTANCE Late-life depression (LLD) is characterized by considerable heterogeneity in
clinical manifestation. Unraveling such heterogeneity might aid in elucidating etiological
mechanisms and support precision and individualized medicine.

OBJECTIVE To cross-sectionally and longitudinally delineate disease-related heterogeneity
in LLD associated with neuroanatomy, cognitive functioning, clinical symptoms, and
genetic profiles.

DESIGN, SETTING, AND PARTICIPANTS The Imaging-Based Coordinate System for Aging and
Neurodegenerative Diseases (iSTAGING) study is an international multicenter consortium
investigating brain aging in pooled and harmonized data from 13 studies with more than
35 000 participants, including a subset of individuals with major depressive disorder.
Multimodal data from a multicenter sample (N = 996), including neuroimaging,
neurocognitive assessments, and genetics, were analyzed in this study. A semisupervised
clustering method (heterogeneity through discriminative analysis) was applied to regional
gray matter (GM) brain volumes to derive dimensional representations. Data were
collected from July 2017 to July 2020 and analyzed from July 2020 to December 2021.

MAIN OUTCOMES AND MEASURES Two dimensions were identified to delineate
LLD-associated heterogeneity in voxelwise GM maps, white matter (WM) fractional
anisotropy, neurocognitive functioning, clinical phenotype, and genetics.

RESULTS A total of 501 participants with LLD (mean [SD] age, 67.39 [5.56] years; 332 women)
and 495 healthy control individuals (mean [SD] age, 66.53 [5.16] years; 333 women) were
included. Patients in dimension 1 demonstrated relatively preserved brain anatomy without
WM disruptions relative to healthy control individuals. In contrast, patients in dimension
2 showed widespread brain atrophy and WM integrity disruptions, along with cognitive
impairment and higher depression severity. Moreover, 1 de novo independent genetic variant
(rs13120336; chromosome: 4, 186387714; minor allele, G) was significantly associated with
dimension 1 (odds ratio, 2.35; SE, 0.15; P = 3.14 ×108) but not with dimension 2. The 2
dimensions demonstrated significant single-nucleotide variant–based heritability of 18%
to 27% within the general population (N = 12 518 in UK Biobank). In a subset of individuals
having longitudinal measurements, those in dimension 2 experienced a more rapid
longitudinal change in GM and brain age (Cohen f2 = 0.03; P = .02) and were more likely to
progress to Alzheimer disease (Cohen f2 = 0.03; P = .03) compared with those in dimension
1 (N = 1431 participants and 7224 scans from the Alzheimer’s Disease Neuroimaging Initiative
[ADNI], Baltimore Longitudinal Study of Aging [BLSA], and Biomarkers for Older Controls
at Risk for Dementia [BIOCARD] data sets).

CONCLUSIONS AND RELEVANCE This study characterized heterogeneity in LLD into 2
dimensions with distinct neuroanatomical, cognitive, clinical, and genetic profiles. This
dimensional approach provides a potential mechanism for investigating the heterogeneity
of LLD and the relevance of the latent dimensions to possible disease mechanisms, clinical
outcomes, and responses to interventions.
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M ajor depressive disorder is one of the most common
mental health disorders and is a leading contribu-
tor to disability worldwide.1,2 Late-life depression

(LLD) refers to major depressive disorder that is present in
individuals 60 to 65 years and older and can be early onset or
late onset. LLD affects 1.8% to 7.2% of older adults in the gen-
eral community.3,4

There is considerable heterogeneity in clinical presentation
and illness progression in LLD.5,6 Pharmacological and psycho-
logical treatments tend to be less effective in LLD than in other
adult age groups. Up to 50% of patients with LLD do not achieve
remission with their first treatment.7 LLD is associated with cog-
nitive impairment5,6 and high rates of comorbidity, including
cardiac and cerebrovascular disease8 and stroke,9 as well as in-
creased risk of obesity, diabetes, frailty,10 and neurodegenerative
diseases, such as Alzheimer disease and vascular dementia.11-14

Magnetic resonance imaging has revealed gray matter (GM)
reductions in bilateral anterior cingulate and medial frontal cor-
tices, insula, putamen, and globus pallidus, extending into the
parahippocampal gyrus, amygdala, and hippocampus. In con-
trast, larger GM volumes have been observed in the lingual
gyrus,15 putamen, and caudate regions.16 Diffusion tensor
imaging demonstrates widespread losses in white matter (WM)
integrity, including in the anterior thalamic radiation, cingu-
lum, corticospinal tract, superior and inferior longitudinal
fasciculi, and uncinate fasciculus.17 Collectively, the findings
support biological models of LLD being associated with
cortical atrophy and WM abnormalities in specific brain net-
works, although the extent and magnitude vary.

Methodological advancements in data-driven biological
subtypes18-23 are challenging the traditional definition of neu-
rological diseases, such as Alzheimer disease18,19,21,22 and de-
pressive disorder.24-26 One of the advantages of semisuper-
vised clustering methods22,23,27,28 is that they perform
subtyping via 1-to-k mapping from the domain of a reference
group (ie, healthy control individuals) to the patient group,
thereby avoiding clustering patients according to disease-
irrelevant confounds. Distinct neuropathological mecha-
nisms may underlie heterogeneity in the presentation and pro-
gression of the clinical phenotype.29 Furthermore, the extent
to which genetic heterogeneity influences or interacts with phe-
notypic expression has barely been explored,30 and individual-
level variability, including environment, genetic or other fac-
tors, may lead to different levels of disease liability.31

We sought to delineate heterogeneity in patients with LLD
in a large multicenter sample (N = 996) using a semisuper-
vised clustering method (heterogeneity through discrimina-
tive analysis [HYDRA]).27 We hypothesized that multiple dis-
tinct dimensions can describe the underlying heterogeneity
and that these dimensions might be prominent in the general
population and longitudinal trajectories.

Methods
Participants
The Imaging-Based Coordinate System for Aging and Neuro-
degenerative Diseases (iSTAGING) is an international consor-

tium consisting of various imaging protocols, scanners, data
modalities, and pathologies,32 comprising harmonized mag-
netic resonance imaging data in more than 35 000 partici-
pants from more than 13 studies and encompassing a wide
range of ages (22 to 90 years). The present study includes
patients with LLD from 4 cohorts, including UK Biobank
(UKBB),33,36 Psychotherapy Response Study at the University
of California San Francisco (UCSF), Baltimore Longitudinal
Study of Aging (BLSA),34,35 and Biomarkers of Cognitive De-
cline Among Normal Individuals (BIOCARD). The institu-
tional review board at each site approved the study. All par-
ticipants provided written informed consent to the studies
contributing to this pooled mega-analysis.

We applied a harmonized LLD definition criterion to con-
solidate participants with LLD and excluded those with comor-
bid medical and neurological diseases that were potential
confounders as follows: all participants from all 4 sites were re-
stricted to be 60 years or older; for UKBB, we excluded individu-
als who were diagnosed with schizophrenia, bipolar disorder,
psychotic symptoms, anxiety, obsessive-compulsive disorder,
posttraumatic stress disorder, Huntington disease, Alzheimer
disease, epilepsy and stroke, diabetes, or hypertension; for
BLSA, we excluded individuals diagnosed with hypertension,
anxiety, bipolar disorder, or schizophrenia; for BIOCARD, we
excluded individuals diagnosed with diabetes or hypertension;
and for UCSF, we excluded individuals with substance misuse,
psychotic features, cognitive-enhancing substance use, neuro-
logical diseases, or posttraumatic stress disorders (Table). We
defined 2 additional populations: a general population (12 518
participants from UKBB) and a longitudinal population (1431
participants from ADNI, BLSA, and BIOCARD). A total of 996 par-
ticipants (501 patients with LLD and 495 healthy control indi-
viduals) were included. Image protocols and acquisition param-
eters for all sites are presented in the eMethods in Supplement 1.
The search terms for this study were late-life depression, hetero-
geneity, semisupervised clustering, and dimensional representa-
tion. Data were collected from July 2017 to July 2020 and ana-
lyzed from July 2020 to December 2021.

Image Preprocessing
Quality-controlled images were corrected for magnetic field
intensity inhomogeneity37 (eMethods in Supplement 1). A mul-

Key Points
Question Is late-life depression (LLD) associated with structural
neuroimaging patterns?

Findings In this case-control study, 2 dimensions best
represented neuroanatomical heterogeneity in patients with LLD:
one was associated with preserved brain structure and the other
demonstrated diffuse structural abnormalities and greater
cognitive impairment. One de novo independent genetic variant
was significantly associated with dimension 1 but not with
dimension 2, and dimension 2 was longitudinally associated with
Alzheimer disease and brain aging more than dimension 1.

Meaning The 2 dimensions representing heterogeneity in LLD in
this study may offer the potential for clinical precision in diagnosis
and prognosis.
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tiatlas parcellation method (multiatlas region segmentation uti-
lizing ensembles of registration algorithms and parameters, and
locally optimal atlas selection [MUSE])38 was used to extract
region-of-interest values of the segmented GM tissue maps
(eTable 2 in Supplement 1). Voxelwise regional volumetric
maps for each tissue volume39 were generated by spatially
aligning skull-stripped images to a template residing in the
Montreal Neurological Institute (MNI) space using a registra-
tion method.40 Fractional anisotropy maps were used to
examine microstructural integrity disruptions in the WM
(eMethods in Supplement 1). The mean fractional anisotropy
values were extracted within the 48 WM tracts of the Johns
Hopkins University international consortium for brain map-
ping diffusion tensor imaging-81 WM label atlas.41 Intersite im-
age harmonization of the GM MUSE regions of interest is de-
tailed in the eMethods in Supplement 1.

Genetic Preprocessing
We consolidated an imaging-genetic data set from UKBB that
passed the quality-control protocol, resulting in 20 438 par-
ticipants and 8 430 655 single-nucleotide variants (eMethods
in Supplement 1). We then selected 774 UKBB participants who
overlapped with the LLD population for genetic analyses.

Discovery of the Multidimensional Representation
via HYDRA
We applied HYDRA27 to the harmonized MUSE regions of
interest (eMethods in Supplement 1). Briefly, HYDRA aims to
cluster disease effects instead of directly clustering partici-
pants by comparing the patterns between healthy control
individuals and patients with LDD, thus resulting in a 1-to-k
mapping from the control domain to the patient domain.

We chose the optimal number of dimensions or clusters
(k), ranging from 2 to 8 clusters, using the adjusted Rand
index.42 We performed additional analyses to evaluate the ro-
bustness of the optimal k clusters scheme. First, split-sample

analyses43 were carried out to assess whether the dimen-
sions in each half exhibited similar neuroanatomical pat-
terns, given that the 2 halves had similar cohort characteris-
tics in terms of age, sex, and site. Second, we conducted leave-
site-out validation44 to examine whether the dimensions were
consistent across sites, training on UKBB only and training on
all sites. Lastly, a permutation test was performed to test the
statistical significance with the optimal k cluster scheme
(eMethods in Supplement 1). Statistical significance was set at
.05 for a 2-tailed test.

Evaluation of the Multidimensional Representation
in Neuroimaging, Cognition, and Genetics
We subsequently investigated the characteristics of the mul-
tiple dimensions regarding GM volume, WM integrity, cogni-
tive functioning and depression-related variables, and ge-
netic architecture. Moreover, we investigated the expression
of the k dimensions in the general population and longitudi-
nal data.

Voxelwise Regional Volumetric GM Maps
Voxelwise regional volumetric GM maps from all sites were
used to assess differences in GM tissue volumes. The 3dttest++
program45 in Analysis of Functional Neuroimages software
version 17.2.10 (Medical College of Wisconsin and National
Institutes of Health)46 was used to detect the distinct neuro-
anatomical patterns of the corresponding dimensions vs
the control group, considering age, sex, site, and intracranial
volume as covariates. For those voxels that survived the
adjustment (Benjamini-Hochberg procedure), voxelwise
effect-size maps (ie, Cohen f2) were estimated for each paired
comparison.

Regional WM Integrity Abnormality
WM microstructural abnormality was assessed using the mean
fractional anisotropy values of the 48 regional tracts from

Table. Study Cohort Characteristics

Characteristic

LLD populationa

Control LLD P value General populationb Longitudinal populationc

No. 495 501 12 518 1431

Age, median (range), y 66.26 (60.00-91.47) 67.33 (60.00-91.00) .34 67.23 (60.00-80.00) 71.88 (60.00-93.00)

Sex, No. (%)d

Female 333 (67) 332 (66)
.78

6123 (49) 666 (47)

Male 162 (33) 169 (34) 6395 (51) 765 (53)

Education, mean (SD), ye 14.76 (2.68) 14.87 (2.62) .55 16.90 (2.81) 16.86 (2.57)

Systole, mean (SD), mm Hge 135.03 (16.83) 134.75 (16.56) .52 140.97 (18.88) 124.06 (2.57)

Diastole, mean (SD), mm Hge 75.59 (9.24) 79.05 (9.15) .45 82.26 (10.45) 69.93 (11.05)

Age at onset, mean (SD), ye NA 34.62 (15.70) NA NA NA

Abbreviations: LLD, late-life depression; NA, not applicable.
a More details on the LLD population are presented in eTable 1 and the

eMethods in Supplement 1.
b For the general population, we included all individuals from UK Biobank

60 years and older (excluding overlapping individuals in the LLD population).
Note that this population is cognitively healthy but might have been
diagnosed with other general disorders historically.36 More details of the
general population are presented in eTable 6 in Supplement 1.

c For the longitudinal population, we included all healthy control individuals
from the Alzheimer’s Disease Neuroimaging Initiative, Baltimore Longitudinal
Study of Aging, and Biomarkers for Older Controls at Risk for Dementia data
sets who were diagnosed as cognitively healthy at baseline. We present here
only baseline information. For more details, refer to eTable 7 in Supplement 1.

d χ2 Test of independence was used for categorical variables.
e Mann-Whitney U (Wilcoxon) test was used for continuous variables.
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UKBB. Group comparisons were performed with multiple lin-
ear regression models using R version 3.4.0 (R Foundation)
(eMethods in Supplement 1). Age and sex were fixed effects,
and group was the variable of interest. P values were cor-
rected, and Cohen f2 was computed with the same procedure
as above.

Demographic, Cognitive, and Clinical Variables
Group comparisons for demographic, cognitive, and clinical vari-
ables (eTable 5 in Supplement 1) were examined separately be-
tween the dimensions. Mann-Whitney U (Wilcoxon) test was
used for continuous variables (eg, age) and χ2 test of indepen-
dence for categorical variables (eg, sex). Global effect size
(ie, Cohen d) was also reported for continuous variables.

Genome-Wide Associations
We performed genome-wide associations with the derived
binary dimension traits (ie, dimension 1 or dimension 2) vs
control using PLINK version 2.0 (Massachusetts General Hos-
pital). The Functional Mapping and Annotation (FUMA)
online platform version 1.3.6b (Center for Neurogenomics
and Cognitive Research)3 was then used to annotate the
genomic risk loci and independent significant single-
nucleotide variants (eMethods in Supplement 1).

Evaluation of the Multiple Dimensions in the General Population
The trained model was applied to the external validation
samples in the general population (Table). Dimension mem-
bership and expression scores of the k dimensions were de-
rived (eMethods in Supplement 1).

We examined neuroanatomical patterns using voxelwise
regional volumetric GM maps. In addition, demographic and
cognitive functioning of the k dimensions was investigated in
the general population. We calculated the genome-wide single-
nucleotide variant–based heritability coefficient (h2) using
Genome-wide Complex Trait Analysis software version 1.93.2β
(School of Life Sciences)4 (eMethods in Supplement 1).

Evaluation of the Multiple Dimensions in Longitudinal Data
and Patient Progress to Alzheimer Disease and Brain Aging
The cross-sectionally trained model was applied to the longi-
tudinal population (Table). Dimension membership was
derived to evaluate its longitudinal changes in MUSE GM
regions of interest using the spatial patterns of atrophy for
recognition of Alzheimer disease index47 and the spatial pat-
terns of atrophy for recognition of brain age index.48 Specifi-
cally, the rate of change over time in these variables for each
participant was derived with a linear mixed-effects model and
compared across dimensions using a linear regression model
(eMethods in Supplement 1).

Results
Two Dimensions Revealed in HYDRA
The highest adjusted Rand index (0.58) was achieved by a
HYDRA model for k = 2 clusters (eFigure 1 in Supplement 1).
The cluster assignment distribution for k= 2 to 8 across sites

is presented in eTable 3 in Supplement 1. For the optimal k = 2
clustering scheme, 227 participants with LLD were assigned
to dimension 1 and 274 to dimension 2. The optimal k = 2 clus-
tering scheme was replicated in split-sample and leave-site-
out analyses (eFigure 1 in Supplement 1). In the leave-site-out
analyses, the percentage overlap for participants assigned to
the same dimension was 446 of 501 (89.02%) (369 of 402 [92%]
for UKBB, 22 of 29 [76%] for BLSA, 4 of 5 [80%] for BIOCARD,
and 51 of 65 [78%] for UCSF). The neuroanatomical patterns
of the 2 dimensions were similar (eFigure 3 in Supplement 1)
to the original dimension patterns (Figure 1). In split-sample
analyses, the GM patterns for the 2 splits were similar (eFig-
ure 2 in Supplement 1) compared with the original dimension
patterns (Figure 1). The adjusted Rand index at k = 2 was higher
than the null distribution in the permutation test (Cohen d,
0.31; 95% CI, 0.13-0.49; P < .001). Lastly, we presented the re-
sults without excluding comorbidities in UKBB, which yielded
similar imaging patterns for the 2 dimensions (eFigure 4 in
Supplement 1). Therefore, we present the results of k = 2 for
all subsequent analyses.

Differences in GM Volumetric Patterns
Patients in dimension 1 demonstrated greater GM tissue vol-
ume in bilateral thalamus, putamen, and caudate relative to
healthy control individuals. Those in dimension 2 demon-
strated reduced GM tissue volume in widespread cortical re-
gions, including bilateral anterior and posterior cingulate gyri,
superior, middle, and inferior frontal gyri, gyrus recti, insular
cortices, superior, middle, and inferior temporal gyri com-
pared with control individuals (Figure 1). The split-sample and
leave-site-out analyses in support are detailed in eFigures 2
and 3 in Supplement 1, respectively.

Differences in WM Integrity Disruption
Patients in dimension 1 exhibited similar fractional anisot-
ropy values compared with control individuals. However, those
in dimension 2 showed widespread WM disruptions, with 31
of the 48 WM tracts demonstrating significantly lower frac-
tional anisotropy values than in control individuals but small
effect sizes (0.01 ≤ Cohen f2 ≤ 0.05, Figure 1B). Specifically, the
middle cerebellar peduncle tract obtained the highest effect
size (Cohen f2 = 0.05). Other affected WM tracts mainly in-
volved the frontal lobe and subcortical limbic regions (eTable 4
in Supplement 1).

Differences in Clinical Profiles by Dimension
Patients in dimension 1 showed statistically higher scores in
fluid intelligence scores (Cohen d, 0.25; 95% CI, 0.09-0.41),
fewer errors in pairs matching test (Cohen d, −0.28; 95% CI,
−0.41 to −0.15), and fewer depressive symptoms in patient
health questionnaire responses (Cohen d, −0.45; 95% CI, −0.95
to 0.05) relative to dimension 2. The 2 dimensions did not
significantly differ in age, sex, site, or other clinical variables
(details in eTable 5 in Supplement 1).

Differences in Genome-Wide Associations
Dimension 1, but not dimension 2, was significantly associ-
ated with 1 de novo independent variant (rs13120336; chro-
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mosome: 4, 186387714; minor allele, G)5 (odds ratio, 2.35; SE,
0.15; P = 3.14 ×108) (Figure 2). Quantile-quantile plots are pre-
sented in eFigure 5 in Supplement 1.

Expression of the 2 Dimensions in the General Population
Applying the trained model to UKBB samples resulted in 2269
participants in dimension 1, 3786 in dimension 2, 2963 in whom
both dimensions were expressed, and 3500 in whom neither
dimension was expressed (eTable 6 in Supplement 1; Figure 3).

The neuroanatomical patterns of the 2 dimensions were
stable (Figure 3). Participants in dimension 1 showed higher
scores in fluid intelligence scores (Cohen d, 0.28; 95% CI, 0.22-
0.34; P < .001), but lower errors in pairs matching (Cohen d,
−0.13; 95% CI, −0.18 to −0.08; P < .001) compared with those
in dimension 2 (eTable 6 in Supplement 1). The expression
scores of the 2 dimensions were significantly heritable in the
general population. Specifically, h2 was 0.27 (SE, 0.04; P < .001)
for dimension 1 and 0.18 (SE, 0.04; P < .001) for dimension 2.

Figure 1. Distinct Structural Patterns in Dimensions 1 and 2
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The 2 Dimensions and Longitudinal Trajectories
Applying the trained model to ADNI, BLSA, and BIOCARD,
which also had longitudinal follow-up data, yielded 301 par-
ticipants in dimension 1, 390 in dimension 2, 330 in whom

both dimensions were expressed, and 410 in whom neither
dimension was expressed in baseline images (eTable 7 in
Supplement 1). The neuroanatomical patterns of the 2
dimensions were stable (eFigure 6 in Supplement 1). The GM

Figure 2. Distinct Genetic Profiles in the Genome-Wide Association Study (GWAS) Between Dimensions 1 and 2
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rate of change in participants in dimension 2 decreased more
rapidly than it did in those in dimension 1 or neither dimen-
sion (−0.1 < Cohen f2 < 0.1), specifically in the left precentral
gyrus, temporal pole, and right anterior insula (eFigure 6 in
Supplement 1). Moreover, the 2 dimensions remained inde-
pendent and stable along longitudinal trajectories (Figure 4).
Patients in dimension 2 showed progression of both spatial
patterns of atrophy for recognition of Alzheimer disease
(Cohen f2 = 0.03) and spatial patterns of atrophy for recogni-
tion of brain atrophy (Cohen f2 = 0.03) compared with those
in dimension 1 (Figure 4B), but not at baseline.

Discussion

Two reproducible and distinct dimensions characterized neu-
roanatomical heterogeneity in patients with LLD. Patients in
dimension 1 showed relatively preserved brain anatomy with
larger subcortical regional volumes and were more likely to
have with 1 de novo genetic variant, while those in dimen-
sion 2 displayed widespread brain atrophy and WM integrity
disruptions with impaired cognitive functioning and in-
creased depressive severity. Moreover, the 2 dimensions were

Figure 3. Expression of the 2 Dimensions in the General Population
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manifested in the general population and were significantly
heritable. Notably, patients in dimension 2 demonstrated
a higher degree of progression to AD and brain aging signa-
tures relative to dimension 1.

The 2 dimensions demonstrated the extent of underlying
GM heterogeneity in patients with LLD. GM atrophy evident
in dimension 2 has been widely reported in previous case-
control studies.49-51 Regional atrophy in the frontal lobes has

Figure 4. The 2 Dimensions and Longitudinal Trajectories to Aging and Alzheimer Disease
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been observed,52,53 which is associated with cognitive defi-
cits as well as reports of psychotic symptoms.54 Striatal atro-
phy has been associated with degeneration in the dopamin-
ergic connections between caudate and cortical limbic areas
involved in mood regulation,55 although increased caudate
and putamen volumes have been found in UKBB depression
phenotypes.16 Dimension 2 showed atrophy in hippocampal
regions, perhaps indicative of future neuroprogressive degen-
eration associated with Alzheimer disease.

The 2 identified neuroanatomical dimensions differed sig-
nificantly in microstructural integrity. Dimension 1 showed no
significant WM abnormalities, while dimension 2 demon-
strated widespread WM abnormalities. WM lesions may play a
key role in conferring vulnerability or perpetuating depressive
syndromes in patients with LLD and contributing to the ob-
served microstructural disturbance.56 Widespread WM disrup-
tions can persist in patients with LLD, even excluding WM le-
sions from the diffusion tensor imaging analysis.57 WM tracts
connecting frontosubcortical and frontolimbic regions are most
frequently affected, including the uncinate fasciculus,58,59 an-
terior thalamic radiation, superior longitudinal fasciculus,56,58,60

and posterior cingulate cortex.61 Dimension 2 demonstrated
clinical features of patients with LLD that are frequently asso-
ciated with more severe cognitive deterioration.62-64 Interest-
ingly, previous studies using depressive symptom and cogni-
tive scores,25 or metabolic-inflammatory profile,26 derived
1 subtype that was a healthy group and other subgroups that
demonstrated higher depressive symptom scores or a more
specific immune-inflammatory dysregulation profile.

The detected genetic variant (rs13120336) was uniquely as-
sociated with dimension 1. Two mapped genes (CCDC110 and
LOC105377590) have been previously associated with cancer
and diabetes.65,66 We speculate that these genetic factors may
play a key role in the heterogeneity of imaging phenotype and
cognitive dysfunctions in the 2 dimensions. Many studies have
shown that depression is associated with different genetic vari-
ants, some of which were not replicated.67-70 Replication needs
to be performed to confirm this detected variant. In general,
our dimensional approach might provide another approach for
genetic associations in depression.

The 2 dimensions showed significant genetic heritability
of 18% to 27%, potentially suggesting genetic underpinnings
of neuroanatomical phenotypes associated with depression in
the general population. Multimorbidity, such as schizophre-
nia and anxiety disorders, in the UKBB population71 might par-
tially account for the expression of the 2 dimensions. Major

depressive disorder is a common and complex syndrome with
an estimated genetic heritability of approximately 40%,72 and
prevalence rates range from 7% to 13%.70 Our findings con-
firm the high risks and prevalence of depression in the gen-
eral population.

The 2-dimensional representation proposed in this study
emphasizes the prognostic potential to distinguish LLD that
cooccurs with or precedes neurodegenerative diseases. Pa-
tients in dimension 2 progressed toward Alzheimer disease or
brain aging, whereas those in dimension 1 expressed a pre-
served brain anatomy. Epidemiological studies73,74 have con-
sistently found that shared risk factors exist in Alzheimer dis-
ease and LLD, supporting depression as a prodromal feature
or a risk factor associated with Alzheimer disease. The 2 di-
mensions did not longitudinally differ in cognitive impair-
ment, perhaps supporting the Alzheimer disease pathologi-
cal cascade model.75

To ensure the reproducibility of the findings, we per-
formed split-sample analysis, leave-site-out analysis, and ap-
plying the model trained on LLD to independent UKBB and
a combined ADNI, BLSA, and BIOCARD cohort with the same
age range as the LLD population. From a technical perspec-
tive, applying the trained LLD model to a younger population
would be possible, but this could lead to a trivial solution ow-
ing to the significant difference in age ranges rather than a
disease effect of interest, as aging might play a crucial role in
driving these dimensions. We believe that applying the model
to external data requires careful consideration of potential con-
founds, such as demographic differences.

Limitations
This study has limitations. First, longitudinal data in LLD
are needed to confirm the added value of the proposed mul-
tidimensional representation. Additionally, replication of
the genome-wide association findings is required when addi-
tional data are available.

Conclusions
In this study, LLD was characterized into 2 dimensions asso-
ciated with neuroanatomy, cognitive functioning, and ge-
netic profiles. The 2-dimensional representation offers a
potential system for future research on the underlying etiol-
ogy mechanisms and heterogeneity of genetic architectures
as well as personalized clinical care.
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